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LETTER TO THE EDITOR 
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Abstract. We provide an example of a nearest-neighbour m d o m  model on a regular lattice 
which. almost certainly, has a unique (disordered) Gibbs state for every boundary condition. 
although by chwsing interaction-dependent boundary conditions, one cm obtain different Gibbs 
states. 

The correct treatment and interpretation of boundary conditions for statistical-mechanical 
systems is a subtle issue, especially for random models [1-14]. For instance, the notion 
of a plurality of pure states with an ultrametric structure, as in Parisi’s proposal, as well 
as the mechanism by which they can be obtained, requires a careful treatment of boundary 
conditions. This issue is of great interest in spin-glass theory [ G I .  Another example is 
the distinction between the ‘weak‘ and ‘strong’ uniqueness of Gibbs measures for random 
spin systems. We say that strong uniqueness applies to a model if, for almost all choices 
of the interaction, only one Gibbs measure exists, while weak uniqueness holds if, for any 
boundary condition chosen independently of the interaction, the thermodynamic l i t  of the 
Gibbs measure is the same for almost all interactions. Weak uniqueness was first explicitly 
introduced and discussed in [l] where it was proved to hold for onedimensional king 
models with random interactions decaying as l / r u  with a > 1; strong uniqueness is known 
to hold only for 01 > [16]. The distinction between interaction-dependent as opposed 
to interaction-independent boundary conditions was previously discussed in [4,5,17] in a 
more implicit way. 

Up till now there have been examples of systems which are weakly, but not strongly, 
unique for spin-glass models on the Bethe lattice [17,18] in the temperature range between 
the ferromagnetic and the spin-glass transition temperatures and for extreme-long-range 
(square summable, but non-summable) spin-glass models [9,19] at high temperatures. 
The usual interpretation of these results is that, in these examples, interaction-dependent 
boundary conditions should be dismissed as ‘unphysical’. 

Here we present for the first time a nearest-neighbour example on a regular lattice 
of this phenomenon. The interpretation of interaction-dependent boundary conditions as 
‘unphysical’ seems somewhat tenuous in this case. 

The model we consider is the q-state nearest-neighbour Potts model on Zd at T, for 
high q (and d 2 2) with a onepattern Hopfield-type site disorder 

H = - CS(hUi., CjUj) (1) 

0305470/95/020045tO3$19,50 0 1995 IOP Publishing Lld L45 

(i.1) 



L46 Letter to the Editor 

where U; E [ I ,  . . . , q)  and E; is a random permutation of the q Potts states at site i [20,211. 
After a gauge transformation, the model is equivalent to a Potts ferromagnet, for which 

it is well known [22.231 that at Z there is a first-order phase transition in the temperature 
variable. At Tc, q ordered states (Gibbs measures) coexist with a disordered state. Any 
fixed boundary condition, due to the random gauge transformation. is equivalent to taking 
a random choice for the boundary condition for the ferromagnet. Thus, it  is sufficient to 
argue that a sequence of finite-volume Gibbs measures for the ferromagnetic model with 
randomly chosen boundary conditions converges to the disordered state. To achieve this, 
we invoke the proof of the first-order transition due to Bricmont-Kuroda-Lebowitz [23]. 
This proof is based on PirogovSinai theory, i.e. a sophisticated contour argument. The 
disordered state is a small perturbation of the 'restricted ensemble' of configurations in 
which all neighbouring spins are different (small for sufficiently high q). We observe that 
the density of pairs of neighbouring spins on the boundaly which are equal is close to I/q 
with large probability, and they are 'sparse' if the spins on the boundary are independently 
chosen on each boundary site, with probability l/q for each of the q Pot& states. This 
means that the boundary condition is a small random perturbation of a 'purely restricted 
ensemble' boundary condition. Therefore, a probabilistic contour argument, as in [24], 
will lead to the desired result that, with respect to the random boundary conditions, the 
thermodynamic l i t  measure will almost surely be the disordered state. 

As previously mentioned, this implies the weak uniqueness of the gauge-transformed 
random Pons-Hopfield model. 

Intuitively, it is of course plausible that uncorrelated random boundary conditions are 
the most 'disordered'. We note that for any extrema1 Gibbs measure, it is m e  that almost all 
(with respect to this same Gibbs measure) boundary conditions recover the original measure 
[Z]. We have considered here almost all boundary conditions with respect to the symmetric 
product measure which, in some sense, is the most random prescription (for example, this 
measure has the largest entropy). 

This letter was begun during a visit by MC to the University of Groningen. Part of the 
research of ACDvE was made possible by a fellowship of the Royal Dutch Academy of 
Arts and Sciences (KNAW). This work was supported by EU-contract CHRX-CT93-0411. 
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